2,610 research outputs found

    Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass

    Get PDF
    The compositional dependence of a glass-forming ability (GFA) was systematically studied in a binary alloy series Cu100−xZrx (x=34, 36, 38.2, 40 at.%) by the copper mold casting method. Our results show the critical casting thickness jumps from below 0.5 mm to above 2 mm when x changes from 34 to 36 while further increase in x reduces the critical casting thickness. The best glass former Cu64Zr36 does not correspond to either the largest undercooled liquid region (ΔT=Tx1−Tg, where Tg is the glass transition temperature, and Tx1 is the onset temperature of the first crystallization event upon heating) or the highest reduced glass transition temperature (Trg=Tg/Tl, where Tl is the liquidus temperature). Properties of bulk amorphous Cu64Zr36 were measured, yielding a Tg ~ 787 K, Trg ~ 0.64, ΔT ~ 46 K, Hv (Vicker's Hardness) ~ 742 kg/mm^2, Young's Modulus ~ 92.3 GPa, compressive fracture strength ~ 2 GPa and compressive strain before failure ~ 2.2%

    Low Temperature Physics

    Get PDF
    Contains reports on one research project

    Indium oxide diffusion barriers for Al/Si metallizations

    Get PDF
    Indium oxide (In2O3) films were prepared by reactive rf sputtering of an In target in O2/Ar plasma. We have investigated the application of these films as diffusion barriers in Si/In2O3/Al and Si/TiSi2.3/In2O3/Al metallizations. Scanning transmission electron microscopy together with energy dispersive analysis of x ray of cross-sectional Si/In2O3/Al specimens, and electrical measurements on shallow n + -p junction diodes were used to evaluate the diffusion barrier capability of In2O3 films. We find that 100-nm-thick In2O3 layers prevent the intermixing between Al and Si in Si/In2O3/Al contacts up to 650°C for 30 min, which makes this material one of the best thin-film diffusion barriers on record between Al and Si. (The Si-Al eutectic temperature is 577°C, Al melts at 660°C.) When a contacting layer of titanium silicide is incorporated to form a Si/TiSi2.3/In2O3/Al metallization structure, the thermal stability of the contact drops to 600°C for 30 min heat treatment

    Ultrasonic studies of the magnetic phase transition in MnSi

    Full text link
    Measurements of the sound velocities in a single crystal of MnSi were performed in the temperature range 4-150 K. Elastic constants, controlling propagation of longitudinal waves reveal significant softening at a temperature of about 29.6 K and small discontinuities at ∼\sim28.8 K, which corresponds to the magnetic phase transition in MnSi. In contrast the shear elastic moduli do not show any softening at all, reacting only to the small volume deformation caused by the magneto-volume effect. The current ultrasonic study exposes an important fact that the magnetic phase transition in MnSi, occurring at 28.8 K, is just a minor feature of the global transformation marked by the rounded maxima or minima of heat capacity, thermal expansion coefficient, sound velocities and absorption, and the temperature derivative of resistivity.Comment: 4 pages, 4 figure

    Smectic ordering in liquid crystal - aerosil dispersions II. Scaling analysis

    Full text link
    Liquid crystals offer many unique opportunities to study various phase transitions with continuous symmetry in the presence of quenched random disorder (QRD). The QRD arises from the presence of porous solids in the form of a random gel network. Experimental and theoretical work support the view that for fixed (static) inclusions, quasi-long-range smectic order is destroyed for arbitrarily small volume fractions of the solid. However, the presence of porous solids indicates that finite-size effects could play some role in limiting long-range order. In an earlier work, the nematic - smectic-A transition region of octylcyanobiphenyl (8CB) and silica aerosils was investigated calorimetrically. A detailed x-ray study of this system is presented in the preceding Paper I, which indicates that pseudo-critical scaling behavior is observed. In the present paper, the role of finite-size scaling and two-scale universality aspects of the 8CB+aerosil system are presented and the dependence of the QRD strength on the aerosil density is discussed.Comment: 14 pages, 10 figures, 1 table. Companion paper to "Smectic ordering in liquid crystal - aerosil dispersions I. X-ray scattering" by R.L. Leheny, S. Park, R.J. Birgeneau, J.-L. Gallani, C.W. Garland, and G.S. Iannacchion

    Mindful Lawyering: a Pilot Study on Mindfulness Training for Law Students

    Get PDF
    Many US law schools are now offering elective courses in mindfulness training to alleviate disproportionately high levels of anxiety, depression, stress, and disordered alcohol use among law students. To date, empirical evidence on the effectiveness of these courses has been lacking. The aim of this pilot study was to explore the feasibility and impact of a 13-week mindfulness course, Mindful Lawyering, specifically tailored to law students. The primary hypothesis was that mindfulness training would be significantly correlated with improvements in well-being and mindfulness

    Smectic ordering in liquid crystal - aerosil dispersions I. X-ray scattering

    Full text link
    Comprehensive x-ray scattering studies have characterized the smectic ordering of octylcyanobiphenyl (8CB) confined in the hydrogen-bonded silica gels formed by aerosil dispersions. For all densities of aerosil and all measurement temperatures, the correlations remain short range, demonstrating that the disorder imposed by the gels destroys the nematic (N) to smectic-A (SmA) transition. The smectic correlation function contains two distinct contributions. The first has a form identical to that describing the critical thermal fluctuations in pure 8CB near the N-SmA transition, and this term displays a temperature dependence at high temperatures similar to that of the pure liquid crystal. The second term, which is negligible at high temperatures but dominates at low temperatures, has a shape given by the thermal term squared and describes the static fluctuations due to random fields induced by confinement in the gel. The correlation lengths appearing in the thermal and disorder terms are the same and show strong variation with gel density at low temperatures. The temperature dependence of the amplitude of the static fluctuations further suggests that nematic susceptibility become suppressed with increasing quenched disorder. The results overall are well described by a mapping of the liquid crystal-aerosil system into a three dimensional XY model in a random field with disorder strength varying linearly with the aerosil density.Comment: 14 pages, 13 figure

    General massive one-loop off-shell three-point functions

    Get PDF
    In this work we compute the most general massive one-loop off-shell three-point vertex in D-dimensions, where the masses, external momenta, and exponents of propagators are arbitrary. This follows our previous paper in which we have calculated several new hypergeometric series representations for massless and massive (with equal masses) scalar one-loop three-point functions, in the negative dimensional approach.Comment: 16 pages, 2 figures, 4 table

    Hydrogen-bonded Silica Gels Dispersed in a Smectic Liquid Crystal: A Random Field XY System

    Full text link
    The effect on the nematic to smectic-A transition in octylcyanobiphenyl (8CB) due to dispersions of hydrogen-bonded silica (aerosil) particles is characterized with high-resolution x-ray scattering. The particles form weak gels in 8CB creating a quenched disorder that replaces the transition with the growth of short range smectic correlations. The correlations include thermal critical fluctuations that dominate at high temperatures and a second contribution that quantitatively matches the static fluctuations of a random field system and becomes important at low temperatures.Comment: 10 pages, 4 postscript figures as separate file
    • …
    corecore